There are an infinite amount of real numbers between 0 and 1. On the top track, when you reach 1, you would only kill 1 person. But on the bottom track you would’ve already killed infinite people by the time you reached 1. And you would continue to kill infinite people every time you reached a new whole number.
On the top track. You would tend towards infinity, meaning the train would never actually kill infinite people; There would always be more people to kill, and the train would always be moving forwards. Those two constants are what make it tend towards infinity, but the train can never actually reach infinity as there is no end to the tracks.
But on the bottom track. The train can reach infinity multiple times, and will do so every time it reaches a whole number. Basically, by the time you’ve reached 1, the bottom track has already killed more people than the top track ever will.
That’s still not doing it justice. If there were one person for every rational number there would be infinitely many in any finite interval (but still actually no more than the top track, go figure) but the real numbers are a whole other kind of infinite!
What I still don’t understand is where time comes into play. Is it defined somewhere? Wouldn’t everything still happen instantly even if there are infinite steps inbetween?
I guess it could be implied by it being a trolley on a track, but then the whole mixing of reality and infinity would also kind of fall apart.
Is every person tied to the track by default? If so, wouldn’t it be more humane to just kill them?
There are an infinite amount of real numbers between 0 and 1. On the top track, when you reach 1, you would only kill 1 person. But on the bottom track you would’ve already killed infinite people by the time you reached 1. And you would continue to kill infinite people every time you reached a new whole number.
On the top track. You would tend towards infinity, meaning the train would never actually kill infinite people; There would always be more people to kill, and the train would always be moving forwards. Those two constants are what make it tend towards infinity, but the train can never actually reach infinity as there is no end to the tracks.
But on the bottom track. The train can reach infinity multiple times, and will do so every time it reaches a whole number. Basically, by the time you’ve reached 1, the bottom track has already killed more people than the top track ever will.
Great explanation, I’d just like to add to this bit because I think it’s fun and important
Or any new number at all. Between 0 and 0.0…01 there are already infinite people. And between 0.001 and 0.002.
That’s still not doing it justice. If there were one person for every rational number there would be infinitely many in any finite interval (but still actually no more than the top track, go figure) but the real numbers are a whole other kind of infinite!
What I still don’t understand is where time comes into play. Is it defined somewhere? Wouldn’t everything still happen instantly even if there are infinite steps inbetween?
I guess it could be implied by it being a trolley on a track, but then the whole mixing of reality and infinity would also kind of fall apart.
Is every person tied to the track by default? If so, wouldn’t it be more humane to just kill them?
Worse. It will kill an infinity every time it will move any distance no matter how small.