If it was impossible to remove heat from things in space we wouldn’t have spacecraft or satellites. We wouldn’t have a permanently manned research outpost in orbit. Hell, the Earth would probably be a big molten ball of lava. But we can effectively remove heat from an in-vacuum system that produces its own heat, all you need are radiators. If it’s radiating too slowly, you get a bigger radiator.
I didn’t say it was impossible, I said it was hard. Bigger radiators absorb more heat when exposed to the sun. One of the problems becomes keeping the solar panels exposed to sunlight while keeping the radiators out of it. Putting them behind the solar panels might work, but they have to be smaller than the solar panels and any energy the solar panels don’t convert to electricity will be re-radiated as heat and picked up by the radiators, requiring a larger size. You could put them on the 'back" side of the spacecraft, but that limits the size. As mentioned in another comment, you could position the spacecraft in geostationary orbit on the terminator, but then reaction mass requirements for station keeping and data signal latency go way up. It’s a problem that has been worked around by people much smarter than me, but a lot of work went into figuring it out.
If it was impossible to remove heat from things in space we wouldn’t have spacecraft or satellites. We wouldn’t have a permanently manned research outpost in orbit. Hell, the Earth would probably be a big molten ball of lava. But we can effectively remove heat from an in-vacuum system that produces its own heat, all you need are radiators. If it’s radiating too slowly, you get a bigger radiator.
I didn’t say it was impossible, I said it was hard. Bigger radiators absorb more heat when exposed to the sun. One of the problems becomes keeping the solar panels exposed to sunlight while keeping the radiators out of it. Putting them behind the solar panels might work, but they have to be smaller than the solar panels and any energy the solar panels don’t convert to electricity will be re-radiated as heat and picked up by the radiators, requiring a larger size. You could put them on the 'back" side of the spacecraft, but that limits the size. As mentioned in another comment, you could position the spacecraft in geostationary orbit on the terminator, but then reaction mass requirements for station keeping and data signal latency go way up. It’s a problem that has been worked around by people much smarter than me, but a lot of work went into figuring it out.